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[1] We have developed a methodology for inverting tracer test data using zonation
information obtained from two-dimensional radar tomograms to improve the (typically
overly smooth) hydraulic conductivity fields obtained from conventional inversion of
tracer test data. The method simultaneously yields two-dimensional estimates of hydraulic
conductivity as well as petrophysical relationships that relate hydraulic conductivity to
radar velocity; these relationships can be assumed to be stationary throughout the area of
investigation or to vary as a function of zonation. Using a synthetic three-dimensional
hydraulic conductivity field, we apply the developed inversion methodology and explore
the impact of the strength and stationarity of the petrophysical relationship as well as the
impact of errors that are often associated with radar data acquisition (such as unknown
borehole deviation). We find that adding radar tomographic data to tracer test data
improves hydrogeological site characterization, even in the presence of minor radar data
errors. The results are contingent on the assumption that a relationship between radar
velocity and hydraulic conductivity exists. Therefore the applicability of the proposed
method may be limited to field sites where this condition is partially or fully
satisfied.
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1. Introduction

[2] Hydrogeological variability exerts a major control on
the movement of solutes in the subsurface. Spatial variabil-
ity is often modeled using zonation [e.g., Carrera and
Neuman, 1986a, 1986b, 1986c] or geostatistical approaches
[e.g., Hoeksema and Kitanidis, 1984]. However, solving
hydrogeological inverse problems using hydraulic head data
only often leads to nonunique models, overly smooth
models, or models where the zones are too large and the
geometry of the zones has been arbitrarily defined, making
it difficult to represent the underlying hydrogeological
structure. McLaughlin and Townley [1996] note that a small
number of other, complementary data (such as solute con-
centrations) might be more valuable than adding head
measurements to an existing data set for the inverse problem
of estimating a transmissivity field. Also, they state that
geophysical methods offer attractive possibilities to supple-
ment traditional hydrogeological data. Scheibe and Chien
[2003] modeled the flow and transport of tracer test data
from the fairly homogeneous Oyster site, Virginia, using
different levels of conditioning data, including geophysical
data. They show that hydraulic conductivity estimates
conditioned to estimates of hydraulic conductivity provided
by both radar tomograms and flowmeter data [Hubbard et

al., 2001] significantly improved transport predictions,
compared to hydraulic conductivity estimates based on
flowmeter data only.
[3] Although the potential benefits of including geophys-

ical data in the estimation of hydrogeological properties have
been demonstrated in recent years, many obstacles prohibit
the routine use of geophysical data for quantitative hydro-
geological estimation. While geophysical methods provide
minimally invasive, densely sampled, and relatively inex-
pensive measurements, problems using geophysical data
in hydrogeological parameter estimation often exist due to
(1) a lack of direct and universal relationships between
geophysical and hydrogeological properties, (2) spatially
variable resolution of geophysical methods, (3) inversion
artifacts caused by data acquisition errors, and (4) artificial
smoothness of the geophysical tomograms caused by the
regularization that is used to solve most geophysical inverse
problems [e.g., Day-Lewis and Lane, 2004].
[4] Most high-resolution hydrogeological parameter esti-

mation approaches that have been developed to date using
geophysics have been carried out using cross-hole tomo-
graphic methods, including seismic [Copty et al., 1993;
Hyndman et al., 1994], radar [Chen et al., 2001; Alumbaugh
et al., 2002], and electrical resistance [Daily et al., 1992].
Examples of hydrogeological parameter estimation using
both geophysical and hydrogeological data include estima-
tion of (1) the hydraulic conductivity and geometry of
hydrofacies [McKenna and Poeter, 1995; Hyndman and
Gorelick, 1996], where the geophysical data are used to
delineate the geometry of hydrofacies; (2) smoothly varying
hydraulic conductivity estimates [Hubbard et al., 2001] and
the spatial correlation of hydraulic conductivity [Hubbard et
al., 1999]; (3) sediment geochemistry [Chen et al., 2004];
(4) moisture content [Alumbaugh et al., 2002; Binley et al.,
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2002]; (5) fracture geometry [Slater et al., 1997]; and (6)
solute transport monitoring [Slater et al., 2002; Day-Lewis
et al., 2003].
[5] In many of these studies [e.g., Chen et al., 2001;

Alumbaugh et al., 2002] the relationship between estimated
geophysical parameters and hydrogeological properties is
assumed to be stationary (i.e., constant within the study
area), as well as independent of data acquisition errors and
the inversion method used. In reality, these conditions are
rarely met, for two reasons. First, petrophysical relation-
ships may vary as a function of hydrogeological heteroge-
neity. For example, Prasad [2003] illustrated, using core
data, how seemingly uncorrelated measurements of seismic
velocity and hydraulic conductivity may have correlation
coefficients as high as 0.9 if they are grouped into hydro-
geologically similar units. This suggests that (1) the esti-
mated petrophysical relationship may become unnecessarily
weak if data from different hydrogeological units are
grouped together in the estimation process, or (2) that a
petrophysical relationship estimated using data from one
type of hydrogeological unit might be invalid for other
nearby units. Another complication is that the tomogram
itself is an estimate rather than a precise image of geophys-
ical properties. The tomogram is affected by many factors,
including the aspect ratio of the distance between boreholes
and the depth interval where measurements are carried out,
data errors, the inversion method, and geological heteroge-
neity [e.g., Peterson, 2001; Alumbaugh et al., 2002]. Day-
Lewis and Lane [2004] suggest that the quantitative use of
geophysical data for hydraulic parameter estimation can be
challenging in the presence of such errors, even if a strong
petrophysical relationship between radar velocity and a
hydrogeological property exists.
[6] Recent research has focused on developing more

robust approaches to develop field-scale petrophysical rela-
tionships using tomographic data. For example, Moysey et
al. [2005] developed a framework to obtain field-scale
estimates of petrophysical relationships given known pet-
rophysical relationships at the core scale. With their ap-
proach, conditional realizations of the property of interest
are generated using petrophysical relationships and geo-
statistical information. Hypothetical geophysical surveys
and inversions of these realizations are subsequently per-
formed. Thus an average or pixel-specific field-scale petro-
physical relationship can be developed that takes scaling,
measurement errors, and the inversion process into account.
Moysey et al. [2005] applied their methodology to a
synthetic case where radar traveltime data between bore-
holes and water saturation measurements in the vicinity of
the boreholes were sampled. They report significant
improvements in the estimates of water saturation between
the boreholes compared with applying the petrophysical
relationship at the core scale to the tomogram. However, a
priori knowledge is needed about the spatial correlation
structure of the property of interest, the errors of the data,
and the petrophysical relationship at the core scale.
[7] To constrain the set of possible hydraulic conductivity

fields in the vadose zone, Kowalsky et al. [2004] used time-
lapse measurements of radar traveltimes and water satura-
tion in hypothetical boreholes during a synthetic infiltration
event. Instead of establishing a site-specific petrophysical
relationship between hydraulic conductivity and radar

velocity, a known petrophysical relationship between radar
velocity and water saturation was utilized. Kowalsky et al.
[2005] extended this work to estimate the petrophysical
relationship as part of the inverse problem and successfully
applied the method to data collected at the Hanford site in
Washington.
[8] Rather than relying on a petrophysical relationship to

map geophysical attributes associated with a tomogram to
hydraulic property estimates, other studies have instead
exploited the geometrical information offered by tomo-
grams [McKenna and Poeter, 1995; Hyndman and Harris,
1996; Eppstein and Dougherty, 1998; Tronicke et al., 2004].
Hyndman et al. [1994] jointly inverted two-dimensional
synthetic seismic and tracer test data to estimate the geom-
etry and hydraulic conductivity of hydrofacies, with the
assumption that the geophysical variations delineate litho-
logical zonation, which is in turn linked to hydraulic
properties. Hyndman and Gorelick [1996] extended this
approach to a three-dimensional analysis of three unique
lithological classes. They applied their method to the
Kesterson aquifer in California, where they obtained a
reasonably good data fit to the tracer test data. The key
assumption underlying the work by Hyndman et al. [1994]
and Hyndman and Gorelick [1996] is that the individual
zones have approximately constant hydrogeological and
geophysical properties.
[9] Hyndman et al. [2000] established an a priori, linear,

field-scale petrophysical relationship between seismic slow-
ness estimates from tomograms and the logarithm of hy-
draulic conductivity using pump tests and core data at
Kesterson, California, with a correlation coefficient of
0.74. In a later stage, they systematically perturbed the
petrophysical relationship in order to estimate hydraulic
conductivity fields that minimize the misfit of tracer and
drawdown data. The tracer test data were better explained
when the hydraulic conductivity realizations were condi-
tioned to both hydraulic conductivity data and seismic
tomograms compared with hydraulic conductivity data
alone.
[10] Building on the work by Hyndman et al. [2000], we

present a methodology to estimate hydraulic conductivity
fields using radar tomograms without assuming that the
petrophysical relationships are constant across interpreted
velocity zones, and without assuming that the geophysical
and hydrogeological properties are constant within the
zones. The methodology can be applied to any data set that
includes tracer data as well as geophysical tomograms
generated by ray-based tomography. In this study, we focus
on tomographic velocity estimates, inferred from cross-hole
radar traveltime data. With our approach, each tomogram is
automatically clustered into different zones based on the
velocity variations. Each zone is assumed to have its own
petrophysical relationship and the relationship does not
need to be estimated a priori, but is instead estimated as
part of the inversion. The inverse problem of estimating a
hydraulic conductivity field is solved by zonewise estima-
tion of the intercept and slope of the linear petrophysical
relationship (which map the radar tomogram to the hydrau-
lic conductivity field) by minimizing the misfit between
observed and simulated tracer test data. The objective of this
paper is threefold: (1) to present a new hydrogeophysical
inverse methodology that uses velocity zonation from tomo-
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grams to constrain the inversion of tracer test data, (2) to use
the developed methodology to explore how hydraulic con-
ductivity estimates obtained using radar tomographic ve-
locity information are influenced by radar data acquisition
errors and assumptions about stationarity of the petrophys-
ical relationship, and (3) to assess the benefits and limita-
tions of incorporating tomographic information in the
hydrogeological inversion for hydraulic conductivity even
when the petrophysical relationship is weak or the radar
data acquisition errors are significant.
[11] To address these objectives, we create a synthetic

three-dimensional hydraulic conductivity field with charac-
teristics similar to the Oyster site [Hubbard et al., 2001]. We
apply our methodology to a number of examples with
different correlation coefficients between radar velocity
and the logarithm of hydraulic conductivity, and consider
the influence of various radar data acquisition errors on the
inversion results.
[12] We demonstrate our proposed methodology using

two-dimensional radar tomograms and three-dimensional
flow and transport simulations, and summarize the benefits
and difficulties of including geophysical data in the inver-
sion of tracer test data. In section 2, we describe the
inversion approach and define four evaluation criteria. In
section 3, we present the results of the synthetic examples.
Finally, in section 4 we discuss the results and present
conclusions about the benefits and limitations of including
tomographic data in estimating hydraulic conductivity fields
using tracer test data.

2. Methodology

[13] In this section, we describe the general approach and
assumptions behind our inversion methodology, present the
types of radar and tracer data sets used in the inversion, and

define four evaluation criteria to evaluate the inversion
results.
[14] Let us define Y = logK, where K (m/s) is the

hydraulic conductivity, and log refers to a base of 10. We
consider isotropic hydraulic conductivities, where Y indi-
cates a three-dimensional array with all Y values in the
discretized model volume (i.e., Y is not a hydraulic
conductivity tensor) and Ŷ is the hydraulic conductivity
estimate. Let V be a matrix that define the true radar
velocity model and V̂ the corresponding tomogram obtained
from inversion of radar traveltime data. Let f(Y, V) denote the
petrophysical relationship between Y and V, hereafter
referred to as the intrinsic relationship, and f(Ŷ , V̂ ) denote
the petrophysical relationship between Ŷ and V̂ , hereafter
referred to as the empirical relationship. Let r(Y, V) and
r(Ŷ , V̂ ) denote the correlation coefficients, hereafter referred
to as the intrinsic correlation coefficient and empirical
correlation coefficient, respectively.
[15] Our methodology is based on the following two key

assumptions: (1) Major spatial variations in hydraulic con-
ductivity are associated with spatial variations in the tomo-
gram; however, spatial variations in the tomogram may not
necessarily correspond to spatial variations in hydraulic
conductivity. (2) Unknown stationary, linear empirical rela-
tionships between radar velocity and the logarithm of
hydraulic conductivity are valid within specific zones of
the tomogram. Relationships between radar velocity and the
logarithm of hydraulic conductivity are site-specific and,
even if a strong and linear petrophysical relationship exists
at one site [Chen et al., 2001], relationships at other sites are
essentially unknown.
[16] The inversion is performed in the following steps.

First, we perform an inversion of the geophysical data.
Second, we define velocity zones within the tomogram.
Third, we fit tracer test data by estimating a hydraulic
conductivity field by zonewise estimation of the intercept
and slope of the linear petrophysical relationships used to
map the tomogram onto a hydraulic conductivity estimate.
Finally, we evaluate the hydraulic conductivity estimate. A
schematic flowchart is provided in Figure 1; a detailed
description follows below.

2.1. Tomographic Zones

[17] In this study, we explore the utility of synthetic high-
resolution radar traveltime data for constraining the tracer
test inversion. The radar velocity contrasts considered in our
examples are on the order of 10%; the straight ray approx-
imation is therefore valid [Peterson, 1986; Gritto et al.,
2004]. We use the algebraic reconstruction technique (ART)
for the tomographic inversion [Peterson et al., 1985], which
was the method used to invert the Oyster data [Hubbard et
al., 2001] on which we base our synthetic examples in
section 3. More elaborate inversion methods exist (such as
simultaneous iterative reconstruction technique (SIRT) or a
regularized least squares solution using LSQR [Paige and
Saunders, 1982]), but for the small velocity contrasts that
we explored here (which are typical for semiconsolidated to
unconsolidated sediments common in environmental in-
vestigations), the quality of the tomogram is mainly
determined by the data and the survey geometry
(J. Peterson, personal communication, 2004).
[18] We discretize the tomograms into uniform pixels

(0.3 � 0.3 m2), somewhat finer compared to the expected

Figure 1. Flowchart of inversion methodology, where the
true hydraulic conductivity field (lower right corner) is used
to create synthetic data sets for the examples considered.
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resolution, which varies within the tomogram as a function
of survey design [e.g., Rector and Washbourne, 1994;
Schuster, 1996]. For the inversion, we use the traveltime
associated with the difference between the first-arrival
energy and the ‘‘zero time,’’ which is the time associated
with signal initiation. The ART algorithm does not provide a
stopping criterion for the inversion. High-quality radar data
allow many iterations for a given damping parameter to fit
progressively finer features of the data. However, for noisy
data, too many iterations will fit the noise and thereby
introduce inversion artifacts. While the optimal number of
iterations is unknown in real applications, the number of
iterations is not so significant as long as it is reasonably
close to the optimal number [Peterson, 1986]. In this
synthetic study, our final tomogram is the tomogram that
minimizes a L1 norm, FV, of the deviations between the true
and the estimated velocity tomogram

FV ¼
XNZ
i¼1

XNX
j¼1

�����Vij � V̂ij

�����Dij; ð1Þ

where NZ and NX are the number of pixels in the z (vertical)
and x (horizontal) direction of the tomogram, respectively,
and Dij is 1 if the relative ray intensity for the corresponding
pixel is above a certain threshold value; otherwise it is 0.
The relative ray intensity is defined as the number of rays
passing a pixel, normalized by the number of rays that pass
the most densely covered pixel. Note that V is unknown in
real applications, where the common stopping criterion is to
iteratively seek a solution until the forward response of
the model fits the observed data within the estimated errors.
The resulting models are ‘‘best case’’ models because the
optimal number of iterations is used. However, in the
synthetic examples presented below we investigate
the inherent information loss related to the tomography
and specific data acquisition errors, such as deviated
boreholes, errors that are also unknown in real applications.
[19] A radar tomogram typically has a number of zones in

which the radar velocity is distinctly different from that in
surrounding areas. These zones might correspond to differ-
ent lithological zones and be associated with different
intrinsic relationships, which we aim to estimate in the
subsequent hydrogeological inversion (see section 2.3). We
use the following automated clustering method to divide the
tomogram into different zones.
[20] 1. Calculate the median, V̂med, of the tomogram.
[21] 2. Assign +1 and �1 to all tomographic pixels that

are above or below the median, respectively, and that have a
relative ray intensity above a threshold value of 0.25.
[22] 3. Cluster the pixels into different zones u, such that

no pixel has a neighboring pixel with the same type (+1 or
�1) that does not belong to the same zone, and such that
each pixel is defined to have eight neighboring pixels
(except at the boundaries).
[23] 4. Discard zones that consist of just a few pixels (in

our study less than seven).
[24] 5. For each pixel, calculate the deviation from the

median.
[25] Zones with few cells are discarded to keep the

number of model parameters small, and because such zones
are likely to have an insignificant impact on flow and

transport. The corresponding pixels are treated as the
background field together with areas where the relative
ray intensity is low. Other criteria besides deviations from
the median are necessary in certain cases (e.g., the presence
of a trend in the tomogram) and more elaborate clustering
techniques, such as k means clustering could be used, a
method in which pixels are iteratively regrouped into a
predefined number of clusters until the variability of the
values within each group is minimized [Tronicke et al.,
2004]. Step 2 in our clustering method must be modified
when using tomograms that do not use ray-based tomo-
graphy. The threshold value in Step 2 could be defined by
calculating the model resolution matrix [Menke, 1984] and
by defining a cutoff related to the best resolved areas. In real
applications, the resulting zonation patterns depend on the
number of iterations if using the ART algorithm or on the
regularization and the estimated data errors if a regularized
least squares solution is sought. The differences in the
zonation patterns occur in areas where the deviation from
the median is low; such pixels get hydraulic conductivity
values close to the background hydraulic conductivity when
applying our hydrogeological inversion regardless of which
zone the pixel belongs to (see section 2.3).
[26] A different approach to zonation not examined in

this work is to define the zones as a part of the inverse
problem [e.g., Hyndman and Harris, 1996; Eppstein and
Dougherty, 1998]. Such a data-driven approach to zonation
is preferable when zonation implies that the geophysical
properties are constant with each zone. However, our
zonation only implies that petrophysical relationships are
constant within each zone.
[27] We also consider the case in which all pixels with a

relative ray intensity above the threshold belong to a single
zone, thereby assuming that the empirical relationship is
constant throughout the tomogram.
[28] The next step is to carry out the hydrogeological

inversion to estimate, for each zone, the empirical relation-
ship that transforms the tomogram into a hydraulic conduc-
tivity estimate that minimizes the misfit between observed
and simulated tracer test data.

2.2. Tracer Test Data

[29] The tomographic zones are used to constrain the set
of possible hydraulic conductivity fields when inverting
tracer test data. The data vector, d, in the hydrogeological
inverse problem is defined as

d ¼ X obs
11 ; . . . ;Xobs

P1 ; . . . ;X obs
pn ; . . . ;Xobs

PN

h i
; ð2Þ

where xpn
obs is an observed tracer mass fraction at sampling

location p at the nth observation time. Unfortunately, it is
not practical to use tracer mass fractions in the initial
iterations of the hydrogeological inversion. The initial
hydraulic conductivity estimate must be close to the true
field for local optimization methods to reach a global
minimum using tracer breakthrough curves. The problem
arises because each data point is considered to be an
independent measurement (i.e., it is possible to locally
improve the data fit by for example fitting the front of the
observed breakthrough curve with the tail of the simulated
breakthrough curve). Therefore we use a two-step hydro-
geologic inversion methodology, outlined below, in which
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the first step aims at finding a better initial hydraulic
conductivity estimate to fit the tracer breakthrough data. In
the second step, the tracer mass fraction data are matched
directly (see equation (2)).
[30] The first step of the hydrogeological inversion

involves fitting an approximation of the integrals

Ztn
t0

Xpdt ð3Þ

at different times tn and sampling locations p, where t0 is the
time of tracer injection. We use a linear interpolation of
equation (3):

Yobs
pn ¼

Xn
i¼1

X obs
pi þ X obs

p i�1ð Þ
2

 !
ti � ti�1ð Þ; ð4Þ

where Ypn
obs is referred to as the observed cumulative

concentration history, and ti is the time of the ith
observation. The simulated cumulative concentration his-
tory, Ypn

sim, is defined in a similar fashion. This representa-
tion is an integrative measure that distinguishes between
early and late arrivals. The same objective could be
achieved by fitting the traveltimes for different percentiles.
[31] We assume for simplicity that the errors in the

observed tracer mass fractions are normally distributed with
zero mean and a standard deviation s. An estimate of the
standard deviation for the cumulative concentration history,
spn
cum, is

scumpn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ti � ti�1ð Þs
s

: ð5Þ

We justify this measure by the fact that the accumulation of
uncorrelated zero-mean Gaussian errors can be considered a
random walk, and the distance from the origin of a random
walk has an expected value of the square root of the sum of
the individual steps [Spitzer, 1976].

2.3. Model Parameters and Inversion Methodology

[32] In this section, we define the model vector, m, used
in the hydrogeological inversion, as

m ¼ Yb; b1; . . . ; bu; . . . ; bU ; l1; . . . ; lp; . . . ; lP

 �

; ð6Þ

where Yb is a background hydraulic conductivity from
which we calculate deviations; bu is the slope of the
empirical relationship in the uth zone (determined using the
clustering method in section 2.1); and lp is the logarithm of
the loss factor (see below) at the pth sampling location. We
seek two-dimensional hydraulic conductivity models be-
cause the radar tomograms used in the subsequent examples
are two-dimensional. However, the observed tracer mass
fraction moves through a heterogeneous three-dimensional
hydraulic conductivity field. A large fraction of the tracer
moves out of the plane between the boreholes (i.e., the area
sampled by the radar survey) and will not be recovered in
the boreholes where the tracer is sampled. The loss factors
represent the fraction of observed tracer that reaches the
samplers compared with the amount of simulated tracer that

reaches the samplers using the estimated models with two-
dimensional heterogeneity. A loss factor of one indicates
that heterogeneity perpendicular to the radar tomogram is
negligible and a loss factor of zero indicates that out-of-
plane heterogeneity controls tracer transport. Accordingly,
the simulated tracer mass fraction, X̂ pn

sim, at sampling
location p and observation time n is transformed to

X̂ sim
pn

0 ¼ 10lp X̂ sim
pn ; ð7Þ

where X̂ pn
sim0 is the transformed simulated tracer mass

fraction, which is compared with the observed tracer mass
fraction; the transformed simulated cumulative concentra-
tion histories are calculated in an analogous way.
[33] Hydraulic conductivities are calculated by

Ŷij ¼ Yb þ bGij
V̂ij � V̂med

� 
; ð8Þ

where Gij is an integer that identifies the estimated zone u
for pixel ij. The estimated hydraulic conductivity at pixel ij
equals the background hydraulic conductivity if bGij is 0.
[34] The hydrogeological inversion is carried out using

iTOUGH2 [Finsterle, 1999], which we have modified to
accommodate the calculation of the cumulative concentra-
tion histories (equation (4)) and the hydraulic conductivity
representation (equation (8)). The hydrogeological forward
model is based on TOUGH2 [Pruess et al., 1999]. The
inverse problem is solved by minimizing the following two
objective functions:

Fcum ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

PN

XP
i¼1

XN
j¼1

Ysim
pn

0 �Yobs
pn

S
1=2
pn

 !2
vuut ; ð9Þ

is minimized during the first step of the inversion, and

Fconc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

PN

XP
i¼1

XN
j¼1

X sim
pn

0 � Xobs
pn

W
1=2
pn

 !2
vuut ; ð10Þ

during the second step, where S and W are diagonal
matrices that contain the estimated error variances, (spn

cum)2

(see equation (5)) and s2, respectively. Our resultant
hydraulic conductivity estimate from the first step of the
inversion is used as an initial estimate in the second step,
where we fit the tracer mass fraction data (see equation (2)).
The Levenberg-Marquardt algorithm [Marquardt, 1963] is
used to minimize the objective functions, where the
Jacobian is calculated with forward finite difference
quotients for the first few iterations and central finite
difference quotients for the last few iterations. The inversion
ends when the decrease of the objective function is less than
one percent between iterations; approximately 10 iterations
are needed for the examples presented in section 3.

2.4. Definition of Evaluation Criteria

[35] We define a set of evaluation criteria to facilitate
comparisons between different hydraulic conductivity esti-
mates obtained through application of the developed inver-
sion approach on the synthetic examples presented in
section 3. The first criterion is the objective function
(criterion 1), defined by equation (10). However, because
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there is an infinite set of hydraulic conductivity models
that equally well can explain the observed tracer mass
fractions, data fit is an insufficient measure. The empirical
correlation coefficient between the estimated and true
hydraulic conductivities, r (Ŷ , Y) (criterion 2), is calculated
for the pixels where the relative ray intensities are above
the threshold value. Criterion 2 evaluates the trends in the
hydraulic conductivity estimates compared to the true
hydraulic conductivity field. The geometric mean of
the hydraulic conductivity field is calculated as a measure
of the effective hydraulic conductivity. As a performance
criterion, we calculate Yeff� Ŷ eff (criterion 3). Criterion 3 tests
whether the estimate is unbiased. Lastly, we estimate the slope
of the empirical relationship between the estimated radar
velocities and the logarithm of estimated hydraulic conduc-
tivities, b̂(ms/m) (criterion 4), using a least squares solution for
the pixels above the relative ray intensity threshold.

3. Synthetic Examples

[36] In this section, we apply our hydrogeological inver-
sion method to estimate hydraulic conductivity fields using
tracer breakthrough data for a set of synthetic examples,
where radar velocity tomograms are used to constrain the
inverse problem. We assess the influence of different
intrinsic relationships and geophysical data acquisition
errors on the resulting hydraulic conductivity estimates.
[37] We first generate the true three-dimensional hydrau-

lic conductivity field using an unconditional sequential
Gaussian simulation [Deutsch and Journel, 1998] with an
exponential variogram model and a spatial correlation
structure similar to that at the Oyster site [Hubbard et al.,
2001]. An exponential semivariogram model with integral
scales of Ix = 1.5 m, Iy = 1.5 m, and Iz = 0.3 m, and a
standard deviation of sY = 0.26 (see Figure 2a) are used.
The intrinsic relationship is defined by scaling the generated
hydraulic conductivity field such that the lowest hydraulic
conductivity corresponds to a radar velocity of 58 m/ms and

the highest value to 64 m/ms, which is the range of radar
velocity values observed at the Oyster site [Hubbard et al.,
2001]. The resulting intrinsic relationship is Y = �18.73 +
0.2323 � V, where V is given in m/ms. The intrinsic
relationship is used to map the true hydraulic conductivity
field (Figure 2a) onto the true velocity model.
[38] We also want to apply the methodology to synthetic

examples where the intrinsic correlation coefficient is not
perfect (i.e., the correlation coefficient is not one). This is
accomplished by creating a set of radar velocity models, Vk,
that have different intrinsic correlation coefficients, but have
the same standard deviation and integral scales as the true
radar velocity model. We do this by generating a new
hydraulic conductivity field, Y0, that has the same standard
deviation and integral scales as the true hydraulic conduc-
tivity field but no correlation with the true hydraulic
conductivity field (i.e., the correlation coefficient is zero).
These two hydraulic conductivity fields allow us to calcu-
late a set of hydraulic conductivity fields that have inter-
mediate correlation coefficients with the true field, as
follows:

Yk ¼ Y 0 þ k Y � Y 0ð Þ; ð11Þ

where k = 0.5 in the example presented in section 3.3. We
use the intrinsic relationship to map the hydraulic
conductivity field onto a velocity model, Vk.
[39] We simulate cross-hole radar tomographic surveys

using the different velocity models and by incorporating
different data acquisition ‘‘errors’’. For the simulations we
used a multioffset gather (MOG) survey, in which trans-
mitters and receivers have a spacing of 0.3 m along the
borehole between the water table and the no-flow boundary
(refer to Figure 2b). This survey layout resulted in
450 model parameters (30 � 15 pixels with a size of
0.3 � 0.3 m2). We restrict the inversions of the radar data
to rays with angles less than 45�, because high-angle
raypaths traveling through the earth are often difficult to

Figure 2. (a) True hydraulic conductivity field Y. (b) Test layout.
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distinguish from faster rays traveling within the boreholes
[Peterson, 2001] and because most inversion algorithms
assume that radar antennas act like a point source, thereby
overestimating velocities when inverting data with high
angular coverage [Irving and Knight, 2005]. The survey
layout gives 628 traveltimes from low-angle raypaths,
which were used in the subsequent ART inversion. We
considered errors caused by (1) incorrect assumptions
regarding the zero times (0.33 ns, 1 ns), (2) random errors
in the horizontal position of the individual transmitters and
receivers (taken from a uniform distribution with values
between �2 cm and 2 cm), (3) inaccurate depth information
(�5 cm) and horizontal separation between boreholes
(�10 cm), and (4) boreholes assumed to be vertical are in
fact deviated by 2% of depth. The errors are chosen to
represent typical errors that are often encountered during
radar surveys (J. Peterson, personal communication, 2004). In
real applications, the sample rate of thewaveforms is typically
0.4 ns giving a maximum picking error of less than 0.2 ns,
which is considered to be insignificant, and thus picking is
neglected herein as a potential source of error.We assume that
we can accurately distinguish between direct waves and
critically refracted waves from the water table [Rucker and
Ferré, 2004]. In practice, it is often necessary to perform the
inversion with measurements starting at least 0.25–0.5 m
below the water table. The data are inverted using the ART
technique, as described in section 2.1. We use the resulting
tomogram to estimate the zones using the approach described
in section 2.1. Note that fewer zones are estimated when we
consider realistic data acquisition errors, because the L1 norm
defined in equation (1) is minimized after a few iterations (see
discussion about ART inversion in section 2.1). Hence
resolving fewer features leads to fewer zones.
[40] The observed tracer data are obtained by simulating

flow and transport through the true three-dimensional
hydraulic conductivity field (Figure 2a) from a 9.3 m line
source using a slug injection of 280 g of bromide (Figure 2b),
assuming a constant effective porosity of 30%, and neglect-
ing dispersion within the pixels. The bromide concentration
is synthetically sampled withmultilevel samplers every 0.9m
in depth at one vertical borehole every 18 hours over 19 days,
with an error of 100 ppb, which is a typical error in field
investigations.
[41] The two-step hydrogeological inversion described in

sections 2.2 and 2.3 is carried out. To test the potential of
estimating different empirical relationships in different
zones, the breakthrough curves are inverted twice for each
example, (1) by estimating an empirical relationship for
each zone, and (2) by estimating a single empirical rela-
tionship for the entire model domain. We use the terms
‘‘nonstationary’’ and ‘‘stationary’’ inversion to refer to these
two types of inversions, respectively.
[42] Below, we visually describe and evaluate five exam-

ples of how the hydraulic conductivity estimates obtained
using tracer and radar data are affected by (1) the ART
inversion (example 1; section 3.1); (2) nonstationary intrin-
sic relationships (example 2; section 3.2); (3) weak intrinsic
relationships (example 3; section 3.3); (4) geophysical data
acquisition errors (but no errors caused by unknown bore-
hole deviations) (example 4; section 3.4); and (5) errors
caused by unknown borehole deviations (example 5;
section 3.5). The five examples are defined in Table 1; a

comparison of the evaluation criteria score (refer to
section 2.4) of all examples are discussed in section 3.6.

3.1. Example 1: Benefits of Including ‘‘Ideal’’
Tomographic Data in the Hydrogeological Inversion

[43] We consider an example in which the intrinsic
relationship is stationary, the intrinsic correlation coefficient
is high (0.99), and the radar data acquisition errors are very
small (see example 1 in Table 1). This example illustrates
the loss of resolution inherent in radar inversion and its
consequences for the hydrogeological inversion.
[44] The tomogram (Figure 3b) is a smooth estimate of

the true radar velocity model (Figure 3a). It captures the
major features in the central part of the model area, but is
less accurate in the upper and lower parts, as well as close to
the boreholes. The zonation pattern based on the clustering
algorithm described in section 2.1 is shown in Figure 3c.
The hydraulic conductivity estimates inferred from the
nonstationary inversion (Figure 3e) and the stationary
inversion (Figure 3f) contain the main features of the true
hydraulic conductivity field (Figure 3d). Note that the
nonstationary inversion is poor in resolving low conductiv-
ity zones because the tracer bypasses such zones through
more conductive zones that are out of the plane defined by
the tomogram. The nonstationary inversion is more sensi-
tive to three-dimensional heterogeneity than the stationary
inversion because it can estimate different empirical rela-
tionships in different zones; therefore the estimates based on
the nonstationary inversion provide an effective hydraulic
conductivity for the regions sampled by the tracer, whereas
the estimates based on the stationary inversion are localized
to variations along the tomogram. The corresponding histo-
grams (Figure 3h Figure 3i) show that the residuals are
largest in the nonstationary inversion. Scatterplots of the
true hydraulic conductivity field against the nonstationary
(Figure 3k) and the stationary (Figure 3l) hydraulic con-
ductivity estimates show a strong correlation between the
hydraulic conductivity estimates and the true hydraulic
conductivity field, with correlation coefficients of 0.64
and 0.85, respectively. The slopes of the empirical relation-
ships (0.19 ms/m and 0.31 ms/m) are rather close to the slope
of the intrinsic relationship (0.23 ms/m). We can conclude
that both the nonstationary and stationary inversions work
satisfactorily for this example, but that the stationary inver-
sion is superior when the intrinsic relationship is stationary.
[45] To illustrate the value of including tomograms to

constrain the set of possible inverse solutions, we perform
an inversion of the tracer test data only (referred to as
example 0 in Table 1) and compare the results with those
obtained above using both tracer test data and a tomogram.
The zonation pattern was obtained by interpolating hypo-
thetical flowmeter data in the boreholes using simple krig-
ing with the integral scales used to generate the true
hydraulic conductivity field (i.e., Ix = 1.5 m, Iy = 1.5 m,
and Iz = 0.3 m). The clustering algorithm described in
section 2.1 was carried out on the kriged field and it was
assumed that the hydraulic conductivity within each of the
resulting nine zones was constant (Figure 3g). This zonation
approximates a possible zonation based on interpolation of
geological or geophysical logs (e.g., gamma logs) between
boreholes. Note that the kriged estimate of the flowmeter
data is used to get the zonation only, i.e., the resulting
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models are not conditioned to any known hydraulic
conductivity values. Despite the relatively large number of
layers considered, the resulting variability in the hydraulic
conductivity distribution is low (Figure 3g), except for one
zone at the bottom of the model where the hydraulic
conductivity is severely overestimated (this parameter is
poorly constrained by the inversion), and the residuals
(Figure 3j) are therefore larger compared with the inversions
that have been regularized by the tomograms. The
scatterplot (Figure 3m) shows a low correlation coefficient
of 0.094. This comparison demonstrates the importance of
accurately regionalizing the subsurface to avoid estimation
bias, as reflected by the low variability in the hydraulic
conductivity field obtained with the zoned model para-
meterization. The objective function (5.6 for the nonsta-
tionary inversion, 7.9 for the stationary inversion, and 6.4
for the inversion that did not utilize the tomograms) is an
insufficient measure of model performance, because the
more satisfying model (judged from criterion 2) from the
stationary inversion has a slightly higher objective function
compared to the inversion that did not utilize the tomogram
in constraining the inversion.
[46] This example illustrates the improvement in the

estimation of the hydraulic conductivity distribution
obtained by regularizing the hydrogeological inverse prob-
lem using tomograms, seen most clearly by comparing the
scatterplots (see Figures 3k–3m).

3.2. Example 2: Influence of Nonstationary Intrinsic
Relationships

[47] The nonstationary inversion can potentially handle
different intrinsic relationships in different zones. This
situation might exist, for example, in heterogeneous subsur-
face regions that have dramatically different lithofacies. To
illustrate that different petrophysical relationships can be
handled, we use the example discussed in section 3.1, but
reflect the hydraulic conductivity values of Zone 4 (Figure 4c)
around the median (Figure 4d), making the originally low-
hydraulic-conductivity zone hydraulically more conductive
(see example 2 in Table 1). The true velocity model
(Figure 4a), the tomogram (Figure 4b), and the zonation
pattern (Figure 4c) are the same as in the previous example.
[48] The nonstationary hydraulic conductivity estimate

(Figure 4e) contains the main features of the true hydraulic
conductivity field, including the new hydraulically conduc-
tive zone. The estimate based on the stationary inversion
(Figure 4f) results in a very smooth model. This is illus-
trated in the corresponding histograms (Figures 4g and 4h).
The scatterplot of the nonstationary inversion estimate
(Figure 4i) is comparable with the previous example (cor-
relation coefficient of 0.75), whereas the scatterplot of the
stationary inversion estimate (Figure 4j) reveals a much
lower correlation coefficient of 0.53. The resulting hydrau-
lic conductivity estimates are more strongly correlated to the
true hydraulic conductivity field compared with the hydrau-

Figure 3. Results from example 1 where data acquisition errors are small, the intrinsic correlation
coefficient is 0.99, and the intrinsic relationship is stationary (see example 1 in Table 1). (a) True velocity
model, (b) tomogram, (c) tomographic zones used in the nonstationary inversion, (d) true hydraulic
conductivity field, (e) hydraulic conductivity estimate from nonstationary inversion, (f) hydraulic
conductivity estimate from stationary inversion, (g) hydraulic conductivity estimate when neglecting
tomogram, (h) histogram of the residual of true and estimated hydraulic conductivity field from
nonstationary inversion, (i) histogram of residuals of true and estimated hydraulic conductivity field from
stationary inversion, (j) histogram of residuals of true and estimated hydraulic conductivity field when
neglecting tomogram, (k) scatterplot of true and estimated hydraulic conductivity field from
nonstationary inversion, (l) scatterplot of true and estimated hydraulic conductivity field from stationary
inversion, and (m) scatterplot of true and estimated hydraulic conductivity field when neglecting
tomogram.
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lic conductivity estimate based on tracer test data only (see
Figure 3g, correlation coefficient of 0.094).
[49] For this example, we conclude that the nonstationary

inversion can handle different intrinsic relationships (see
Figure 4i), and that the stationary inversion is unable to
provide a reasonable model (see Figure 4j) and provides a
very smooth model. The stationary inversion fails because
the assumption of a single petrophysical relationship uni-
formly applied through the model domain is invalid.

3.3. Example 3: Weak Intrinsic Relationship

[50] In this example, we consider a more realistic, i.e.,
weaker correlation between radar velocity and hydraulic
conductivity. Although there is no universal relationship
between radar velocity and hydraulic conductivity [e.g.,
Annan, 2005] nor between seismic velocity and hydraulic
conductivity [Pride, 2005], site-specific relationships may
exist at some sites. The effective dielectric constant is
linearly related to the inverse of the electrical formation
factor [e.g., Lesmes and Friedman, 2005], which is a
measure of the effective interconnected porosity [e.g., Revil
and Cathles, 1999], thereby providing a possible link
between radar velocity and hydraulic conductivity. Chen et
al. [2001] found that radar velocity estimates inferred from
radar tomography correlated reasonably well (with a
correlation coefficient of 0.68) with collocated estimates
of the logarithm of hydraulic conductivity inferred from
flowmeter data at the South Oyster Site, VA, and other
examples provided in section 1 described the use of seismic
velocities for estimating hydraulic conductivity. Never-
theless, the correlation between the geophysical attributes

and hydraulic conductivity is site-specific and may not exist
for some sites, and the applicability of the method presented
herein to real field data has yet to be demonstrated. In
this example of a rather weak intrinsic relationship, we use
V0.5 (correlation coefficient 0.57; Figure 5a) as the velocity
model from which we calculate the radar traveltime data (see
example 3 in Table 1). The resulting tomogram and zonation
pattern are shown in Figures 5b and 5c, respectively.
[51] The resulting hydraulic conductivity estimates

(Figure 5e and Figure 5f) are distorted (Figure 5g and 5h)
compared with the true hydraulic conductivity field
(Figure 5d). In particular, the nonstationary inversion yields
hydraulic conductivity estimates that are too conductive (refer
to Figure 5i). The correlation coefficients between the true and
estimated hydraulic conductivity for the nonstationary and
stationary inversions are 0.42 and 0.64, respectively.
[52] We conclude that in the presence of weak intrinsic

relationships, the stationary inversion provides hydraulic
conductivity estimates that better reflect the true hydraulic
conductivity field than the estimates based on the nonsta-
tionary inversion. Furthermore, even when there is only a
weak and stationary petrophysical relationship, the zonation
information provided by the tomographic data can be used
to improve the estimation of hydraulic conductivity over the
estimates obtained using tracer test data only (see Figure 3g,
correlation coefficient of 0.094).

3.4. Example 4: Effects of Radar Data
Acquisition Errors

[53] In this example, we consider the influence of radar
data acquisition errors on the estimates of hydraulic con-

Figure 4. Results from example 2 where data acquisition errors are small, the intrinsic correlation
coefficient is 0.99, and the intrinsic relationship is nonstationary (example 2 in Table 1). (a) True velocity
model, (b) tomogram, (c) tomographic zones used in the nonstationary inversion, (d) true hydraulic
conductivity field, (e) hydraulic conductivity estimate from nonstationary inversion, (f) hydraulic
conductivity estimate from stationary inversion, (g) histograms of residuals of true and estimated
hydraulic conductivity field from nonstationary inversion, (h) histograms of residuals of true and
estimated hydraulic conductivity field from stationary inversion, (i) scatterplot of true and estimated
hydraulic conductivity field from nonstationary inversion, and (j) scatterplot of true and estimated
hydraulic conductivity field from stationary inversion.
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ductivity. To simulate typical data acquisition errors, we
have artificially increased the zero time error to 1 ns,
incorporated a 5 cm error in the depth of the receivers,
and reduced the assumed distance between the boreholes by
10 cm (i.e., example 4 in Table 1). The resulting tomogram
yielded a biased velocity range of 60 to 66 m/ms, instead of
the true velocity range of 58 to 64 m/ms (compare Figures 6a
and 6b). Note that if these corrupted estimates of radar
velocity were used together with a relationship established
from theoretical considerations or laboratory experiments to
estimate the hydraulic conductivity field, it would also
result in biased hydraulic conductivity estimates.
[54] However, by incorporating the zonation pattern

(Figure 6c) to constrain the inversion of the tracer data, we
find that the hydraulic conductivity estimates are centered on
the background hydraulic conductivity (see Figures 6e and 6f)
and that the residuals are relatively low (see Figures 6g and6h).
The correlation coefficients of 0.72 and 0.80 are close to the
results of example 1 (see example 1 in Table 1) and they are
more strongly related to the true hydraulic conductivity field
than estimates obtained using tracer test data only (see
Figure 3g, correlation coefficient of 0.093).
[55] The slopes of the empirical relationships (0.33 ms/m

and 0.41 ms/m) are higher compared with the intrinsic
relationship of 0.23 ms/m. Recall that fewer iterations are
used in the ART inversion for data with large errors (see
section 2.1), leading to smoother tomograms. The high
empirical relationships indicate that a more variable hydrau-
lic conductivity estimate improves the data fit compared

with applying the intrinsic relationship directly to the
tomogram. This finding illustrates that optimal petrophys-
ical relationships in the field are dependent on measurement
errors as well as the underlying physics.
[56] This example highlights the advantage of including

radar and tracer data in the inversion even if the radar data
set has relatively large errors. We conclude that although the
radar data acquisition errors considered in this example lead
to smoothing and bias, they do not create any significant
bias or inversion artifacts in the resulting hydraulic conduc-
tivity estimates.

3.5. Example 5: Effects of Borehole Deviations

[57] In this last example, we consider the effect of a 2%
deviation of the right borehole, while assuming that both
boreholes are vertical (see example 5 in Table 1). On the
basis of analyses of borehole deviation logs at hydrogeo-
logical study sites, boreholes are frequently deviated by 2%
or more.
[58] It is well established that unaccounted for borehole

deviations lead to tomograms that are severely distorted
[Peterson, 2001], as is seen in the high-velocity region at
the bottom of the tomogram shown in Figure 7b. Borehole
deviation logs are often, but not always, collected to
circumvent such inversion errors. The resulting zonation
pattern obtained using the tomogram corrupted by borehole
deviation errors are shown in Figure 7c. When we use these
distorted tomograms within the hydrogeological inversion,
we find that both the nonstationary (Figure 7e) and the

Figure 5. Results from example 3 where data acquisition errors are small, the intrinsic correlation
coefficient is 0.57, and the intrinsic relationship is stationary (example 3 in Table 1). (a) True velocity
model, (b) tomogram, (c) tomographic zones used in the nonstationary inversion, (d) true hydraulic
conductivity field, (e) hydraulic conductivity estimate from nonstationary inversion, (f) hydraulic
conductivity estimate from stationary inversion, (g) histogram of residuals of true and estimated
hydraulic conductivity field from nonstationary inversion, (h) histogram of residuals of true and
estimated hydraulic conductivity field from stationary inversion, (i) scatterplot of true and estimated
hydraulic conductivity field from nonstationary inversion, and (j) scatterplot of true and estimated
hydraulic conductivity field from stationary inversion.
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stationary hydraulic conductivity estimates (Figure 7f) are
overly smooth, as is revealed by both the residuals (Figures 7g
and 7h) and the scatterplots (Figures 7i and 7j). The
correlation coefficients are 0.36 and 0.45, respectively.
The slopes of the empirical relationships (0.053 ms/m and
0.11 ms/m, respectively) do not represent the intrinsic
relationship (0.23 ms/m).
[59] As expected, borehole deviations have a large impact

on the hydraulic conductivity estimates. It is therefore
essential to collect borehole deviation logs along with
high-resolution tomographic data sets to avoid a potentially
large estimation bias. In this example, using a simple
hydrogeological inversion of the tracer test data with a
zonation based on borehole logs is probably preferable
(see Figure 3g) to incorporation of the severely distorted
zonation from the tomogram into the inversion of the tracer
test data.

3.6. Evaluation Criteria Scores

[60] The criteria scores for all examples are given in the
bottom of Table 1. The objective function (Cr1 in Table 1)
indicates that the nonstationary inversions fit the data better
than or equally good as the stationary inversions. This is
expected due to the larger number of fitting parameters in
the nonstationary inversion. The objective functions gener-
ally increase when decreasing the intrinsic correlation
coefficients or introducing data acquisition errors.
[61] The correlation coefficients (Cr2 in Table 1) be-

tween the true and estimated hydraulic conductivity fields

based on the stationary inversions are superior compared
with the estimates based on the nonstationary inversions,
except for the example in which two different intrinsic
relationships exist (see example 2). In this example, the
nonstationary inversion performs better. The stationary
inversions are less influenced by three-dimensional hetero-
geneity as discussed in section 3.1. The residuals of the
estimated hydraulic conductivity fields (Cr3 in Table 1) are
rather small, and the stationary inversions have the lowest
residuals for the examples where the intrinsic relationship
is stationary.
[62] Finally, we note that the empirical relationships (Cr4

in Table 1) provide a reasonable estimate of the intrinsic
relationship if the correlation coefficient is high (i.e., r(Y,
V) > 0.5) and data acquisition errors are small. However,
data acquisition errors typically yield higher slopes of the
empirical relationships to compensate for the resulting
tomograms being too smooth if data of low quality are used.
On the other hand, if the tomogram is severely distorted, the
empirical relationship is close to zero because the estimated
zones are basically not revealing any hydrogeological
information. Therefore empirical relationships close to zero
might indicate that no intrinsic relationship exists or that the
quality of the tomogram is too low to reveal the intrinsic
relationship.
[63] The results presented in this work indicate what

could be obtained in a real field setting for a given intrinsic
relationship and radar data acquisition errors. However, we
note that we disregard many other sources of error. For

Figure 6. Results from example 4 where data acquisition errors are nonnegligable, the intrinsic
correlation coefficient is 0.99, and the intrinsic relationship is stationary (example 4 in Table 1). (a) True
velocity model, (b) tomogram, (c) tomographic zones used in the nonstationary inversion, (d) true
hydraulic conductivity field, (e) hydraulic conductivity estimate from nonstationary inversion,
(f) hydraulic conductivity estimate from stationary inversion, (g) histogram of residuals of true and
estimated hydraulic conductivity field from nonstationary inversion, (h) histogram of residuals of true and
estimated hydraulic conductivity field from stationary inversion, (i) scatterplot of true and estimated
hydraulic conductivity field from nonstationary inversion, and (j) scatterplot of true and estimated
hydraulic conductivity field from stationary inversion.
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example, we assume a linear intrinsic relationship, which is
not physically based; we neglect hydrogeological features
smaller than the resolution of the tomograms; and we
disregard effects of the ray approximation, i.e., we assume
that there is no loss in resolution due to the finite frequency
content of radar signals (note that such a potentially
considerable resolution loss can be approximated by Fresnel
zone tomography [Day-Lewis et al., 2005]). The positions
of the boreholes in our examples are close to ideal, i.e.,
larger horizontal offsets between the boreholes or less
angular coverage would degrade the resulting models
compared to what is presented here. Moreover, the errors
in the hydrogeological data acquisition are assumed to be
small, we assume a constant porosity, and we assume that
the test design is perfectly known. Nonetheless, we feel that
these synthetic case studies give an indication of both the
benefits and limitations of including geophysical tomo-
graphic data when inverting tracer test data to estimate a
hydraulic conductivity field. The results could also be used
to guide the design of geophysical cross-hole experiments
(e.g., what error sources to minimize) and to provide
insights into the expected worth of the resulting tomograms
for hydrogeological characterization.

4. Discussion and Conclusions

[64] Our methodology uses the internal velocity variabil-
ity of zones defined by tomograms to constrain the set of
possible hydraulic conductivity models in a hydrogeological
inverse problem, which we solve using tracer test data. Our

methodology does not assume that the parameters in the
petrophysical relationship are known a priori, nor do we
assume that the petrophysical relationships are stationary.
However, our method does rely on the existence of a
relatively strong relationship, which may not exist at some
sites. Our methodology simultaneously yields hydraulic
conductivity estimates as well as the empirical relationship
between radar velocity and hydraulic conductivity. Our
main findings from synthetic models with different intrinsic
correlation coefficients and radar data acquisition errors can
be summarized as follows.
[65] 1. Given an intrinsic correlation coefficient between

radar velocity and hydraulic conductivity of 0.5 or higher
and small radar data acquisition errors, the estimated hy-
draulic conductivity fields derived from hydrogeological
inversion using constraints from geophysical tomograms
are more strongly correlated with the true hydraulic con-
ductivity field than estimates obtained using tracer test data
only.
[66] 2. We can accurately estimate the hydraulic conduc-

tivity field (r(Ŷ , Y) > 0.8) if a strong and stationary intrinsic
relationship (correlation coefficient r(Y, V) > 0.8) exists and
the geophysical data acquisition errors are very small.
Furthermore, using the nonstationary inversion approach,
each zone can have a different intrinsic relationship.
[67] 3. We can obtain a useful estimate the effective

hydraulic conductivity using tracer and tomographic data,
even if the intrinsic relationship is weak and geophysical
data acquisition errors are relatively large (see criterion 3 in
Table 1).

Figure 7. Results from example 5 where data acquisition errors are small except for a 2% error in the
deviation of the right borehole, the intrinsic correlation coefficient is 0.99, and the intrinsic relationship is
stationary (example 5 in Table 1). (a) True velocity model, (b) tomogram, (c) tomographic zones used in
the nonstationary inversion, (d) true hydraulic conductivity field, (e) hydraulic conductivity estimate from
nonstationary inversion, (f) hydraulic conductivity estimate from stationary inversion, (g) residuals of
true and estimated hydraulic conductivity field from nonstationary inversion, (h) residuals of true and
estimated hydraulic conductivity field from stationary inversion, (i) scatterplot of true and estimated
hydraulic conductivity field from nonstationary inversion, and (j) scatterplot of true and estimated
hydraulic conductivity field from stationary inversion.
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[68] 4. Geophysical data acquisition errors significantly
decrease the correlation coefficient between the hydraulic
conductivity estimates and the true hydraulic conductivity
field (e.g., half of the correlation is lost if we have an
unknown borehole deviation of 2% (example 5) compared
to the case in which only very small errors are introduced
(example 1)). The geophysical errors that most distort the
estimates of hydraulic conductivity are borehole deviations
and relative errors in the depths of the transmitters and
receivers.
[69] 5. The nonstationary inversion performs better if the

intrinsic relationship is nonstationary. Large deviations
between the nonstationary and stationary inversion esti-
mates indicate nonstationary intrinsic relationships or
three-dimensional heterogeneity.
[70] In practice, we should realize the limitations of

hydraulic conductivity estimates that are based on tomo-
grams. For example, relationships between radar velocity
and hydraulic conductivity are site-specific and may not
exist at all at some sites. Despite the difficulty in
estimating data errors and uncertainties in petrophysical
relationships (both of which are significant problems in
real field applications) this study suggests that tomographic
information may be used with tracer test data to improve the
estimates of hydraulic conductivity over conventional
approaches. By using zonation information offered by the
tomograms, the proposed inversion methodology helps to
overcome some of the common obstacles associated with
tomographic data.
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